

GCE

Chemistry A

Advanced Subsidiary GCE

Unit **F322:** Chains, Energy and Resources

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Annotations

Annotation	Meaning
1.143	Benefit of doubt given
લગા	Contradiction
×	Incorrect response
1482	Error carried forward
	Ignore
[RAG]	Not answered question
2.00	Benefit of doubt not given
No.	Power of 10 error
A	Omission mark
RE-	Rounding error
EF.	Error in number of significant figures
✓	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning			
DO NOT ALLOW	Answers which are not worthy of credit			
IGNORE	Statements which are irrelevant			
ALLOW	Answers that can be accepted			
()	Words which are not essential to gain credit			
	Underlined words must be present in answer to score a mark			
ECF	Error carried forward			
AW Alternative wording				
ORA	Or reverse argument			

Subject-specific Marking Instructions

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:

Q2 (b)(i)

Q4 (c)

Q8 (d)

Q8 (e)

All questions where an ECF has been applied.

Checking additional pages

All the Additional Pages in the examination script must be checked to see if any candidates include any answers.

- When you open question 1(a) you will see a view of page 23 one of the Additional Pages.
- If the page is blank then, using the marking mode, annotate the page with an omission mark, ^.
- Scroll down to page 24 and annotate with a ^ if the page is blank.
- If pages 23 or 24 are not blank then use the paper clip icon to link the pages to the correct questions.
- You may need to contact your Team Leader if you do not know how to do this.

Generic comments

ORGANIC STRUCTURES

For a 'structure' or 'structural formula',

• ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)

For an alkyl group shown within a structure,

- **ALLOW** bond drawn to C or H, e.g.**ALLOW** CH₃-,CH₂-, C₃H₇-, etc
- ALLOW vertical 'bond' to any part of an alkyl group

For an OH group shown within a structure,

- **DO NOT ALLOW** formula with horizontal —HO **OR** OH –
- ALLOW vertical 'bond' to any part of the OH group

For a CHO group shown within a structure,

DO NOT ALLOW COH

For a 3D structure,

For bond in the plane of paper, a solid line is expected:	
For bond out of plane of paper, a solid wedge is expected:	
For bond into plane of paper, ALLOW:	Minning Minning Minning
ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge e.g.:	

NAMES

Names including alkyl groups:

- ALLOW alkanyl, e.g. ethanyl (i.e. IGNORE 'an')
- **DO NOT ALLOW** alkol, e.g. ethol (ie 'an' is essential)

Names of esters:

- Two words are expected, e.g. ethyl ethanoate
- **ALLOW** one word, e.g. ethylethanoate

Names with multiple numbers and hyphens:

Use of 'e'

- ALLOW superfluous 'e', e.g. propane-1-ol ('e' is kept if followed by consonant)
- **ALLOW** absence of 'e', e.g. propan-1,2-diol ('e' is omitted if followed by vowel)

Hyphens separate name from numbers:

ALLOW absence of hyphens, e.g. propane 1,2 diol

Multiple locant numbers must be clearly separated:

- ALLOW full stops: e.g. 1.2 OR spaces: 1 2
- DO NOT ALLOW e.g. 12

Locant numbers in formula must be correct

DO NOT ALLOW propan-3-ol

Order of substituents should be alphabetical:

• ALLOW any order (as long as unambiguous), e.g. 2-chloro-3-bromobutane

ABBREVIATIONS

van der Waal's forces

ALLOW vdw forces **OR** VDW forces (and any combination of upper and lower cases)

Q	uesti	on	Answer	Marks	Guidance
1	(a)		(a compound) with no double bond (or triple bond) ✓ containing hydrogen and carbon only ✓	2	ALLOW contains single bonds only ALLOW it contains just carbon and hydrogen
			Somaning hydrogon and sarbon chily		DO NOT ALLOW a mixture of carbon and hydrogen OR only carbon and hydrogen molecules
	(b)		CH ₂ ✓	1	ALLOW H ₂ C
	(c)		D and I OR F and G OR F and H ✓	1	DO NOT ALLOW G and H
	(d)	(i)	Cyclic hydrocarbons have more efficient combustion ✓	1	The answer must relate to combustion or burning Assume 'they' refers to the cyclic hydrocarbons ALLOW cyclic hydrocarbons allow smoother burning OR cyclic hydrocarbons increase octane number OR cyclic hydrocarbons reduce knocking OR cyclic hydrocarbons are less likely to produce pre-ignition OR cyclic hydrocarbons are more efficient fuels OR cyclic hydrocarbons burn better OR easier to burn OR cyclic hydrocarbon combust more easily OR improves combustion DO NOT ALLOW cyclic hydrocarbons ignite more easily ALLOW ora for straight chain hydrocarbons IGNORE cyclic hydrocarbons increase volatility of fuel IGNORE cyclic hydrocarbons have a lower boiling point cyclic hydrocarbons are a better fuel on their own is NOT sufficient cyclic hydrocarbons burn more cleanly on their own is NOT sufficient

Q	uesti	ion	Answer	Marks	Guidance
1	(d)	(ii)	$C_7H_{16} \rightarrow C_7H_{14} + H_2 \checkmark$	1	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) DO NOT ALLOW cycloheptane structure in equation
	(e)		D has more surface (area of) contact OR D is a bigger molecule ✓ D has more van der Waals' forces OR C have fewer van der Waals' forces ✓	2	Both answers need to be comparisons Assume 'it' refers to D ALLOW has more electrons OR longer (carbon) chain OR higher molecular mass IGNORE surface area ALLOW ORA ALLOW D has stronger van der Waals' forces / larger VDW / greater VDW OR C has weaker van der Waals' forces OR C has smaller VDW ALLOW more VDW forces More intermolecular forces is not sufficient DO NOT ALLOW reference to bonds breaking or more bonds present unless it is clear that that the bonds are VDW
	(f)		Same structural formula ✓ Different arrangement of groups around a double bond OR different arrangement (of atoms) in space ✓	2	ALLOW have the same structure / displayed formula / skeletal formula Stereoisomers have the same formula or molecular formula is not sufficient ALLOW different three dimensional arrangement

C	uesti	ion	Answer	Marks	Guidance
1	(g)		C ₇ H ₁₆ + 11O ₂ → 7CO ₂ + 8H ₂ O Correct reactants and products ✓ Balancing ✓	2	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW any correct multiple IGNORE state symbols Balancing is dependent on correct formulae
	(h)		C ₁₆ H ₃₄ → C ₈ H ₁₈ + 2C ₄ H ₈ ✓	1	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW any correct multiple ALLOW structural OR displayed OR skeletal formulae in equation ALLOW but-1-ene IGNORE state symbols
	(i)	(i)	Group of atoms (in a molecule or compound) that is responsible for the reactions ✓	1	ALLOW the 'part' (of the molecule or compound) that reacts ALLOW the group of atoms that gives the chemical properties ALLOW group of atoms which indicates the homologous series
		(ii)	8 🗸	1	
		(iii)	has an unpaired electron ✓	1	ALLOW plural i.e. unpaired electrons has a lone OR single OR free electron is not sufficient
			Total	16	

Q	uestion	Answer	Marks	Guidance
2	(a)	Any three from:	3	Assume it refers to Process 1
		Process 1 has a high atom economy OR has 100% atom economy OR a greater atom economy OR makes only the desired product ✓		ALLOW process 1 has no waste OR process 1 has no co- products OR process 1 needs less separation OR process 1 has fewer other products OR gives only one product ALLOW ORA if process 2 is specified
		Process 1 has a very efficient conversion of reactants to products OR not much waste of starting material ✓		ALLOW ORA if process 2 is specified high percentage yield is not sufficient DO NOT ALLOW if percentage yield is explicitly linked to more waste (products) e.g. process 1 has a high percentage yield so makes little waste (product) scores 0 marks but process 1 makes no waste (product) and it has a high percentage yield scores 1 mark
		Process 1 uses a lower pressure ✓		ALLOW ORA if process 2 is specified
		Process 1 uses up toxic carbon monoxide ✓		
		Process 1 uses methanol which can be produced from biomass ✓		IGNORE process 2 comes from crude oil a non-renewable source ALLOW process 1 starts from a renewable source if the source is specified e.g. wood, municipal waste or sewage IGNORE reference to catalyst and rate of reaction

Q	uesti	on	Answer	Marks	Guidance
2	(b)	(i)		5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			Contains C=O bond because of absorption between 1700 and 1740 cm ⁻¹ (from the spectrum) ✓		ALLOW contains a carbonyl group because of absorption within range 1640–1750 cm ⁻¹ OR contains an aldehyde, ketone or carboxylic acid because of absorption within range 1640–1750 cm ⁻¹ ✓ Mention of only an aldehyde or a ketone is not sufficient it needs reference to the wavenumber LOOK FOR THIS MARK ON THE SPECTRUM
			does not contain an O–H bond ✓		ALLOW not a carboxylic acid ✓ ALLOW does not have any other characteristic absorbance due to other functional groups
			(So was a) ketone OR aldehyde ✓		ALLOW (so was a) carbonyl compound ALLOW this mark if a structure of an aldehyde or a ketone is given even if the structure has an incorrect number of carbon atoms
			<i>M</i> _r = 86 ✓		
			Correct structure ✓		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
					LOOK FOR AN ALDEHYDE or KETONE with FIVE carbon atoms OR a DIALDEHYDE, DIONE OR an OXOALDEHYDE with FOUR carbon atoms – a comprehensive list of correct structures is shown on page 34 IGNORE incorrect name
					DO NOT ALLOW COH for an aldehyde

F322 Mark Scheme January 2012

Question	Answer	Marks	Guidance
	H H H H H H H H H H H H H H H H H H H		ALLOW as a slip one stick with no H on in a displayed formula
	OR		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	OR HHHHH		
	H—C—C—C—C—H 		
	pentan-3-one		

Q	uesti	on	Answer	Marks	Guidance
2	(b)	(ii)	Correct structure ✓	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
					All bonds and all hydrogen atoms must be shown in a displayed formula within this question
			Name of the structure drawn ✓		Name must correspond to the correct structure for two marks ALLOW butanoic acid or 2-methylpropanoic acid if the structure drawn is incorrect There is no ECF in this question
			Н Н Н Н О О О О О О О О О О О О О О О О		ALLOW CH ₃ CH ₂ COOH
			butanoic acid OR		
			H—CH ₃ O—H		ALLOW (CH ₃) ₂ CHCOOH
			2-methylpropanoic acid		ALLOW methylpropanoic acid

F322	Mark Scheme	January 2012
------	-------------	--------------

C	uestion	Answer	Marks	Guidance
2	(c)	Use of propan-1-ol ✓	4	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW from the equation propanol OR C ₃ H ₇ OH is not sufficient
		CH ₃ COOH + C ₃ H ₇ OH → CH ₃ COOCH ₂ CH ₂ CH ₃ + H ₂ O Correct formulae for the ester ✓ Correctly balanced equation ✓		ALLOW molecular formula OR correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW propan-2-ol in the equation
		Add H₂SO₄ OR acid catalyst OR H⁺ ✓		ALLOW conditions mark over the arrow in the equation
		Total	14	

Q	Question		Answer	Marks	Guidance
3	(a)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.68 (kJ) award 2 marks	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
					IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc
					ALLOW ecf only from using mass of 50.486
			$q = mc\Delta T \mathbf{OR} = 50.0 \times 4.18 \times 12.8 \checkmark$		ALLOW 2675.2 J IGNORE sign If mass used is 50.486 answer is 2701.202944
			= 2.68 (kJ) ✓		ALLOW 2.7 OR 2.675 OR 2.6752 DO NOT ALLOW 3 IGNORE sign If mass used is 50.486 answer is 2.7, 2.70, 2.701 up to calculated value of 2.701202944 correctly rounded
					ALLOW one mark for using 4.2 and correctly calculating q in kJ to at least 2 sig figs
		(ii)	amount = 0.02(00) (mol) ✓	1	ALLOW $\frac{1}{50}$
					IGNORE trailing zeroes

Q	uesti	on	Answer	Marks	Guidance
3	(a)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -134 (kJ) award 3 marks IF answer = +134 (kJ) award 2 marks 2.68 ÷ 0.02 ✓	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF i.e. $\frac{(i)}{(ii)}$
			Correctly calculates the value to 3 sig figs ✓		This is dependant on the previous mark ALLOW ECF If 2.68, 2.675 or 2.6752 and moles of 0.02answer is (-)134 If mass of magnesium included answer is (-)135 If 2.7 kJ and moles of 0.02 used answer is (-)135 ALLOW only answers to three significant figures
			– sign ✓		- sign is independent of answer
	(b)	(i)	(Enthalpy change) when one mole of a compound ✓ is formed from its elements ✓	3	ALLOW energy required OR energy released ALLOW (energy change) when one mole of a substance/molecule/product DO NOT ALLOW enthalpy change for one mole of products DO NOT ALLOW one mole of reactants
			at 25 °C/298 K AND 1 atmosphere/101 kPa ✓		ALLOW any stated temperature and 1 bar/1000/mb/100kPa/10000Pa/101000Pa/101000Nm ⁻² etc IGNORE reference to concentration

F322 Mark Scheme January 2012

Question	Answer	Marks	Guidance
3 (b) (ii)	Correct labelling of enthalpy cycle $ \begin{array}{c c} & -168 \\ \hline & -285 \\ \hline & -393 \end{array} $ Two or three boxes correct \checkmark BUT all four boxes correct \checkmark $ \Delta H_{\rm f} -792 \text{ (kJ mol}^{-1}\text{) }\checkmark $	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF from wrong enthalpy changes in the boxes
	Total	12	

Question	Answer	Marks	Guidance
4 (a)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 431.5 (kJ mol ⁻¹) award 2 marks	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc
	Energy required to break bonds = (+)679 kJ ✓ so bond enthalpy = (+)431.5 ✓		ALLOW (+)432 ALLOW one mark in this question for –431.5 OR (+)863 ALLOW ecf for bond enthalpy = 0.5 x (–184 + energy
(b)	more concentrated (particles) OR more particles per (unit)	2	Must state somewhere in the answer that the rate is faster for full marks ALLOW ORA if lower pressure is specified ALLOW particles are closer together
	volume ✓		OR more crowded particles OR more particles in the same space OR same number of particles in a smaller volume ALLOW molecules for particles but DO NOT ALLOW atoms DO NOT ALLOW 'area' instead of 'volume'
	more collisions per second OR more frequent collisions ✓		ALLOW collisions more often OR increased rate of collision OR collisions are more likely OR there is a greater chance of collisions 'More collisions' is not sufficient IGNORE successful

	Question		Answer	Marks	Guidance
4	(c)	On	y-axis label is '(number of) molecules' AND x-axis label is 'energy' AND one correct curve ✓ Correct curve for lower temperature (labelled) ✓	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Assume answers refer to lower temperature and rate decreases unless specified otherwise ALLOW ORA i.e. correct explanation for why higher temperatures increase rate if clearly specified ALLOW particles instead of molecules throughout question DO NOT ALLOW atoms the first time it appears in the answer Boltzmann distribution - must start at origin and must not end up at 0 on <i>y</i> -axis i.e. must not touch <i>x</i> -axis Maximum of curve to left AND higher than maximum of higher temperature curve AND below higher temp line at higher energy as shown in diagram below IGNORE minor point of inflexion of both curves
			Activation energy does not change OR clearly labelled on diagram, e.g. <i>E</i> _a OR <i>E</i> ✓ Fewer molecules have energy above activation energy OR fewer molecules have enough energy to react ✓ So fewer successful collisions ✓		ALLOW ORA for higher temperature if specified Fewer molecules have enough energy to collide successfully is worth one mark Fewer collisions per second is not sufficient

F322 Mark Scheme January 2012

Question	Answer	Marks	Guidance
	(number of) molecules energy fewer molecules with energy above E_a		
(d) (i)	Cl ₂ → 2Cl ✓	1	No need to show radicals with a 'dot'
(ii)	HCI + H ✓ HCI + CI ✓	2	No need to show radicals with a 'dot'
(iii)	Any two from:	2	No need to show radicals with a 'dot'

C	uesti	on	Answer	Marks	Guidance
5	(a)		Only one (desired) product formed ✓	1	ALLOW no waste products OR no co-product OR all atoms on left hand side are in the desired product OR sulfuric acid is the only product IGNORE it is an addition reaction
	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 94% award 3 marks	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			Moles of sulfur reacted or theoretical moles of $H_2SO_4 = 1.60 \times 10^6 \checkmark$		ALLOW 1.6 × 10 ⁶ to the calculator value 1.601246106 × 10 ⁶ correctly rounded ALLOW 1.60 up to calculator value 1.601246106 correctly rounded
			Actual moles of $H_2SO_4 = 1.50 \times 10^6 \checkmark$		ALLOW 1.5 × 10 ⁶ to the calculator value 1.498470948 × 10 ⁶ correctly rounded ALLOW 1.5 up to calculator value 1.498470948 correctly rounded ALLOW theoretical mass of $H_2SO_4 = 157$ (tonnes) up to the calculator value of 157.0822430 correctly rounded for two marks
			% yield = 94 ✓		ALLOW ECF for a percentage yield from wrong moles above but answer must have two significant figures
	(c)	(i)	Position of equilibrium – unchanged ✓	2	
			Rate of backward reaction – decreases ✓		

Answer	Marks	Guidance
	1	Both position of equilibrium AND explanation needed for one mark
(equilibrium position shifts) to the left because (forward) reaction is exothermic OR equilibrium position shifts) to the left because reverse reaction is endothermic ✓		Note: ALLOW suitable alternatives for 'to left', e.g. towards SO ₂ or O ₂ / towards reactants OR in backward direction OR in reverse direction OR decreases yield of SO ₃ /products ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' ALLOW reaction gives out heat for exothermic ALLOW reaction takes in heat for endothermic ALLOW moves to the left in the endothermic direction ALLOW ORA if specified IGNORE responses in terms of rate
(equilibrium position shifts) to the left because there are more moles (of gas) on the reactant side OR (equilibrium position shifts) to the left because there are fewer moles (of gas) on product side ✓	1	Both position of equilibrium AND explanation needed for one mark Note: ALLOW suitable alternatives for 'to left', e.g.: towards SO ₂ or O ₂ / towards reactants OR in backward direction OR in reverse direction OR decreases yield of SO ₃ /products ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' ALLOW correct reference to volume of gases e.g. shifts to the left because there is a smaller volume of gas on the product side ALLOW ORA if specified IGNORE responses in terms of rate
	(equilibrium position shifts) to the left because (forward) reaction is exothermic OR equilibrium position shifts) to the left because reverse reaction is endothermic ✓ (equilibrium position shifts) to the left because there are more moles (of gas) on the reactant side OR (equilibrium position shifts) to the left because there are	(equilibrium position shifts) to the left because (forward) reaction is exothermic OR equilibrium position shifts) to the left because reverse reaction is endothermic ✓ 1 (equilibrium position shifts) to the left because there are more moles (of gas) on the reactant side OR (equilibrium position shifts) to the left because there are

F322 Mark Scheme January 2012

Questic	on	Answer	Marks	Guidance
S (d)	on (i)	Correct structure ✓	Marks 1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW bonds going to any part of the CH ₃ , CH ₂ and CH bonds ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal –HO in the formula ALLOW as a slip one stick with no H on in a displayed
		OR H CH ₃ H H CH ₃ H H CH ₃ H H CH ₃ H		IGNORE name

Question	Answer		Guidance	
Question 5 (d) (ii)	Correct structure for L H Correct structure for M H Correct structure for M H Correct structure for N H H H H H H H H H H H H H	3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) for L, M and N e.g. N - CH ₂ CHCH ₂ CH ₂ CH ₃ Answers to L and M are interchangeable IGNORE cis/trans OR E/Z labels ALLOW as a slip one stick with no H on in a displayed formula	
			ALLOW 2 marks if three correct structures are drawn but some are in the wrong boxes ALLOW 1 mark if two correct structures are drawn but in the wrong boxes	

F322 Mark Scheme January 2012

Question		on	Answer	Marks	Guidance
5	(d)	(iii)	H CH ₃ H H H H H H H H H H H H H H H H H H H	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal –HO in the formula ALLOW as a slip one stick with no H on in a displayed formula
			Total	13	

F322	Mark Scheme	January 2012
------	-------------	--------------

Q	Question		Answer Marks		Guidance	
6	(a)	(i)	(<i>m</i> / <i>z</i> =) 46 ✓	1		
		(ii)	CH ₃ O ⁺ OR CH ₂ OH ⁺ ✓	1	MUST show '+'	
		(iii)	C ₂ H ₆ O ✓	1	ALLOW H ₂ CO ₂	
	(b)		$\frac{63 \times 72.2 + 65 \times 27.8}{100} $ OR 63.556 OR 63.56 \checkmark	3		
			A _r = 63.6 ✓		ALLOW two marks for 63.6 with no working out	
			Copper / Cu ✓			
			Total	al 6		

Question		on	Answer	Marks	Guidance
7	(a)		Shape – tetrahedral ✓ Bond angle 109.5° ✓	2	ALLOW 109–110°
	(b)	(i)	Volatile OR non-toxic OR non-flammable OR easily vaporised ✓	1	ALLOW not carcinogenic / not an irritant / not harmful / not hazardous IGNORE cheap / not dangerous / gas / low boiling point DO NOT ALLOW inflammable
		(ii)	(C–F or C–CI) bonds need a large amount of energy to break ✓	1	ALLOW (the C–F or C–C/) bonds are strong / bonds have a large bond enthalpy ALLOW the molecule is not polar enough / non-polar molecule is not sufficient ALLOW the activation energy is too high DO NOT ALLOW dissolves IGNORE references to hydrogen bonding
	(c)		$CF_2CI_2 \rightarrow CF_2CI + CI \checkmark$ AND ANY TWO FROM	3	ALLOW CF ₂ CI ₂ (breaks down to) produces chlorine atoms/radicals ALLOW equation with any CFC
			C <i>I</i> catalyses the decomposition of ozone \checkmark C <i>I</i> + O ₃ \Rightarrow C <i>I</i> O + O ₂ \checkmark C <i>I</i> O + O \Rightarrow C <i>I</i> + O ₂ \checkmark		ALLOW $CIO + O_3 \rightarrow CI + 2O_2$ ALLOW $O_3 + O \rightarrow 2O_2$ OR $3O_2 \rightarrow 2O_3$ for one mark if the two equations for the steps have not been given IGNORE other propagation equations

Question		Answer Ma		Guidance	
7	(d)	Because (more) <u>UV</u> will reach the Earth's surface and risk of (skin) cancer increased/risk of cataracts/crop mutation increased ✓	1	DO NOT ALLOW global warming ALLOW protects from UV which causes skin cancer etc	
	(e)	Ideas related to uses CFCs are still entering the atmosphere (from disused items) OR CFCs are still used (for some purposes and by some countries) ✓ Ideas relating to lifetime within the atmosphere CFCs have a long lifetime in the atmosphere OR it takes a long time for CFCs to reach upper atmosphere OR CFCs are inert ✓	2	ALLOW 'stratosphere' for 'upper atmosphere' ALLOW CFCs are still entering the ozone layer	
		Total	10		

F322	Mark Scheme	January	2012

Question	Answer	Marks	Guidance
8 (a)	compound P the compound P the compound Q the compound Q the compound R the compou	3	ALLOW structures with missing hydrogen atoms on the carbon atoms that do not take part in the reaction. i.e. all hydrogen atoms must be shown in Q but not in P and R For example for the structures of P and R C C C C H C C H Br Br

Question	Answer	Marks	Guidance
8 (b)	Orange OR brown to colourless ✓	1	ALLOW shades of orange OR yellow OR brown DO NOT ALLOW red alone DO NOT ALLOW any response that includes precipitate OR solid, irrespective of colour
(c)	Two or more repeat units \checkmark H_2C CH_2	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) Must have at least two repeat units and the free bonds at the end ALLOW free bonds with dotted lines All carbon–carbon bonds in the polymer chain must be shown IGNORE any brackets drawn IGNORE any missing hydrogen atoms on the CH2 groups ALLOW skeletal formula

F322 Mark Scheme January 2012

Question	Answer		Guidance
Question 8 (d)	Answer Curly arrow from double bond to attack hydrogen of H–C/ and breaking of H–C/ bond ✓ Correct dipole shown on H–Cl ✓ Correct carbonium ion drawn ✓ Curly arrow from Cl⁻ to the carbonium ion ✓	Marks 5	Guidance ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Curly arrow must start from the double bond and not a carbon atom; other curly arrow must start from H−C/ bond DO NOT ALLOW dipoles on double bond Dipole must be partial charge and not full charge Carbocation needs a full charge and not a partial charge (charges do not need to be in a circle) C/ curly arrow must come from one lone pair on C/ ion OR from minus sign on C/ ion Lone pair does not need to be shown on C/ ion ALLOW structures with missing hydrogen atoms on the CH₂ groups
	How have the second of the se		

F322 Mark Scheme January 2012

Question	Answer	Marks	Guidance
8 (e)		5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	Nucleophilic substitution ✓		
	Heterolytic (fission) spelt correctly ✓		
	dipole shown on C—CI bond, $C^{\delta+}$ and $CI^{\delta-}$		Dipole must be partial charge and not full charge
	curly arrow from HO⁻ to carbon atom of C—CI bond ✓		HO ⁻ curly arrow must come from one lone pair on O of HO ⁻ ion OR from minus sign on HO ⁻ ion
	curly arrow from C—CI bond to the chlorine atom and formation of CI		curly arrow must start from C–CI bond and not from C atom
	$\begin{array}{c} H_2 \\ H_2 \\ H_2 \\ \end{array} \begin{array}{c} C \\ H_2 \\ \end{array} \begin{array}{c} H_2 \\ C \\ \end{array} \begin{array}{c} C \\ H_2 \\ \end{array} \begin{array}{c} C \\ \end{array}$		ALLOW structures with missing hydrogen atoms on the CH ₂ groups
			ALLOW S _N 1 mechanism dipole shown on C—CI bond, C ⁵⁺ and CI ⁵⁻ ✓ curly arrow from C—CI bond to the CI atom and CI shown ✓ curly arrow from HO ⁻ to correct carbonium ion ✓
	Total	15	

APPENDIX 1

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

